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Linking variability in climate to wetland habitat suitability:
is it possible to forecast regional responses from simple
climate measures?
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Abstract Temporary wetlands have value to both

ecological and social systems. Interactions between

local climate and the surrounding landscape result in

patterns of hydrology that are unique to temporary

wetlands. These seasonal and annual fluctuations in

wetland inundation contribute to community compo-

sition and richness. Thus, predicting wetland commu-

nity responses to environmental change is tied to the

ability to predict wetland hydroregime. Detailed

monitoring of wetland hydroregime is resource-

intensive, limiting the scope and scale of forecasting.

As an alternative, we determine which freely available

measures of water availability best predict one com-

ponent of wetland hydroregime, habitat suitability

(i.e., the predictability of water in a wetland) within

and among geographic regions. We used data from

three North American regions to determine the climate

index that best explained year-to-year variation in

habitat suitability during a key phenological period—

amphibian breeding. We demonstrate that simple,

short-term climate indices based solely on precipita-

tion data best predict habitat suitability in vernal pools

in the northeast, montane wetlands in the west and

coastal plain wetlands in the southeast. These
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relationships can help understand how changes in

short-term precipitation patterns as a result of climate

change may influence the overall hydroregime, and

resulting biodiversity, of temporary wetlands across

disparate biomes.

Keywords Wetland hydroregime � Climate � Water

availability � Annual dynamics � Wetland-breeding

amphibians � Habitat suitability

Introduction

The physical and chemical attributes of freshwater

wetlands arise from a complex set of interactions

between local climate and the surrounding landscape

(Kupferberg 1996; Pounds et al. 1999; Brooks 2004;

Strayer and Dudgeon 2010; Jackson et al. 2014). The

resulting hydroregime (depth, duration, timing, fre-

quency, and predictability of water in a wetland;

Greenberg et al. 2015) in turn structures the commu-

nity composition and species richness of vertebrates,

invertebrates and plants inhabiting these wetlands

(Schneider and Frost 1996; Brooks 2000; Brooks and

Hayashi 2002; Colburn 2004; Sims et al. 2013). Thus,

the ability to predict how climate influences the

timing, duration and depth of water in wetlands and

how that relationship differs across systems is key to

predicting year-to-year variation in habitat suitability

and forecasting responses of wetland biodiversity to

climate change (Krasnostein and Oldham 2004; Cal-

houn et al. 2017).

One of the primary mechanisms by which climate

change will impact amphibians is by altering the

hydroregime of wetlands in which they breed (Green-

berg et al. 2015). For example, prolonged periods of

reduced precipitation or extreme drought may shorten

wetland hydroperiod (i.e., the duration of inundation),

thereby leading to changes in species occupancy,

richness, and abundance (Donald et al. 2011; Scheele

et al. 2012; Zipkin et al. 2012; Grant et al. 2013; Walls

et al. 2013a; Miller et al. 2018), or reduced breeding

probabilities (Church et al. 2007; Kinkead and Otis

2007) and success (Semlitsch et al. 1987; Jansen et al.

2009; Scheele et al. 2012). In turn, the shortening of

wetland hydroperiod may result in overall declines in

recruitment (Dodd et al. 1993; Dodd 1994; Taylor

et al. 2006) or larval survival and adult fitness

(Semlitsch et al. 1988; McMenamin and Hadly

2010; Ficetola and Maiorano 2016). Changes in the

timing and frequency of precipitation may also result

in changes to species phenology (e.g., Todd et al.

2010; Klaus and Lougheed 2013; Benard 2015). The

onset of breeding migrations as well as the emigration

of metamorphosed juveniles have been closely tied to

local weather patterns in a variety of systems (Hardy

and Raymond 1980; Timm et al. 2007; Todd et al.

2010; Ficetola and Maiorano 2016).

Temporary wetlands (also referred to as ‘intermit-

tently inundated,’ ‘seasonal forest ponds,’ or ‘geo-

graphically isolated’ wetlands; Tiner 2003; Calhoun

et al. 2017) play a critical role in the life-cycle of some

wetland-breeding amphibians (e.g., Semlitsch et al.

1996; Skelly et al. 1999; Babbitt et al. 2003) because

they dry on a frequent and often regular basis (Calhoun

et al. 2017). Large aquatic predators, such as fish, are

generally unable to colonize and persist in temporary

wetlands due to these discrete periods of inundation

and drying (Babbitt et al. 2003; Brooks 2009). In

addition to habitat for an assortment of specialized

species, temporary wetlands provide a variety of

ecosystem services, ranging from flood abatement and

water filtration to carbon sequestration and connecting

nutrient pools between aquatic and terrestrial systems

(Leibowitz 2003; McLaughlin and Cohen 2013;

Cohen et al. 2016). Further, temporary wetlands are

small in size and often lack surface connections to

other water bodies (Leibowitz 2003; Zedler 2003),

thereby making them especially sensitive to changes

in local temperature and precipitation patterns (Winter

and Rosenberry 1998; Winter 2000; Greenberg et al.

2015; Calhoun et al. 2017). This sensitivity, coupled

with the vital role these wetlands play in diverse

ecosystems, means that our ability to predict responses

to year-to-year variation in short-term weather pat-

terns resulting from changes in long-term climate, is

critically important for making predictions about the

fate of wetland biodiversity under a changing climate

(Winter and Rosenberry 1998; Krasnostein and Old-

ham 2004; Ryan et al. 2014).

Wetland hydroregime is influenced by a combina-

tion of edaphic and geomorphic, as well as climatic

factors (Winter 2000; Brooks and Hayashi 2002; Grant

2005; Jackson et al. 2014). Consequently, different

types of temporary wetlands (e.g., prairie potholes,

playas, vernal pools) are likely to respond differently

to changing climatic conditions based on local soil
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characteristics (e.g., texture, structure, organic matter

content), landscape position, and surface topography

(Jackson et al. 2014). Furthermore, the frequency and

types of hydrologic inputs and outputs to the wetland

impact the depth, length and timing of inundation.

Vernal pools in the Northeastern U.S., for example,

are often inundated for a short, predictable period of

time annually (Zedler 2003; Paton 2005) and are

closely tied to seasonal interactions between precip-

itation patterns and evapotranspiration (Zedler 2003;

Brooks 2009). Coastal plain wetlands, on the other

hand, exist in regimes of high environmental variabil-

ity (Michener et al. 1997; Walls et al. 2013b) and are

likely to respond differently to changes in precipita-

tion than wetlands of the Northeastern U.S., where

annual average precipitation patterns have historically

been relatively consistent (Brooks 2004). In addition,

the physical differences in basin geomorphology and

soil properties may result in differences in water-

holding capacity and recharge after precipitation

events (Winter 2000; Jackson et al. 2014).

Intensive instrumentation and measurement of

weather variables and water levels at a fine scale are

ideal data for predicting responses in hydroregime to

changes in climate (Krasnostein and Oldham 2004;

Lee et al. 2015). However, these methods are expen-

sive when replicated on a large scale, thus financial

constraints often limit our ability to forecast changes

into the future (Matthews 2010) or even predict year-

to-year variation in habitat suitability. One solution is

to develop predictions for widely available, high-

resolution, gridded environmental indices, such as the

many metrics of water availability and water-balance

that now exist. These include precipitation-based

measures such as the standardized precipitation index

(SPI; Guttman 1998), simple water balance metrics

such as the standardized precipitation evapotranspira-

tion index (SPEI; Vincente-Serrano et al. 2010), and

metrics that incorporate information on regional soil

characteristics and processes such as the Palmer

drought indices (Palmer 1965) and variable infiltration

capacity models (VIC; Liang et al. 1994). Geospatial

data sets exist for each and most can be forecasted

based on future climate scenarios using readily

available outputs such as precipitation and tempera-

ture. At the same time, none of these metrics were

specifically developed for temporary wetland systems,

and instead focus on measuring stream flow, drought,

fire potential, and other variables also related to

environmental water balance, which may limit the

ability to predict changes in the different components

of temporary wetland hydroregime based solely on

climate data sets.

We focused on predicting one component of

wetland hydroregime—habitat suitability (i.e., the

predictability of water in the wetland) defined by

metrics such as the presence or absence of water or

wetland size (e.g., maximum depth, area), during the

amphibian breeding season. Our goal was to determine

whether climate indices related to water availability

could predict year-to-year fluctuations in habitat

suitability, and whether similar measures worked

across wetlands in diverse landscapes. We focused

on three distinct North American ecosystems (Fig. 1):

vernal pools in the Northeast, montane wetlands in the

West, and coastal plain wetlands in the Southeast. We

predicted that both vernal pools and coastal plain

wetlands would be most sensitive to changes in short-

term precipitation. In contrast, we predicted that long-

term indices of hydrologic condition or indices that

directly measured snowpack, an important component

of the hydrologic cycle in montane ecosystems

(Cooper 1990; Carroll and Cressie 1997; Ryan et al.

2014), would best explain year-to-year variation in

montane wetland suitability. By achieving our goals,

we hoped to improve the understanding of how

changes in precipitation patterns because of climate

change may influence the overall hydroregime, and

resulting biodiversity, of temporary wetlands across

distinct ecosystems.

Methods

We focused on three geographic regions in which the

U.S. Geological Survey’s Amphibian and Research

Monitoring Initiative (ARMI) had conducted inde-

pendent, long-term studies on wetland-breeding

amphibians. Within each of these regions, surveys

were regularly conducted to estimate amphibian

abundance or occurrence dynamics. Metrics such as

the presence or absence of water or wetland size (e.g.,

maximum depth, area) were also collected at the time

of these surveys as measures of habitat suitability for

wetland-breeding amphibians (Table 1). Here, we

concentrated on these proxy variables of wetland

depth, area and the presence or absence of water, and

did not utilize species-specific survey data.
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Region #1: Vernal pools in Northeastern U.S.

We used data collected from n = 370 wetlands

throughout 13 National Parks (NP) and National

Wildlife Refuges (NWR) throughout the Northeastern

U.S. (Fig. 1a, b), where vernal pools have been well

studied (see Crouch and Paton 2002; Calhoun et al.

2003; Egan and Paton 2004; Paton 2005) and are

abundant, accounting for approximately 57% of all

wetlands (Paton 2005). We limited our analysis to the

subset of monitored wetlands visited C 3 years

between 2004 and 2014 (Online Resource 1). Data

were comprised of observations from: Acadia NP, ME

(n = 22 wetlands), Assabet River NWR,MA (n = 20),

Cape Cod National Seashore, MA (n = 30), Canaan

Valley NWR, WV (n = 49), Erie NWR, PA (n = 18),

Fig. 1 Map of our three regional study systems located in a,
b 13 National Parks and National Wildlife Refuges in

Northeastern U. S, � USGS.; c, d Yosemite National Park,

CA, in Western U.S.,� Jane Lester and Devin Edmonds; and e,
f St. Marks National Wildlife Refuge, FL, in Southeastern U.S.,

� Alan Cressler

Table 1 Description of the wetland type, response variable, and the method of data collection for each region

Region Wetland type Response variable Method of collection

Northeastern

U.S.

Vernal pools Wetland depth Maximum depth averaged over all visits within the same sampling

window

Western U.S. Montane wetlands Wetland area Width and length measurements taken at furthest points of the

visible water line

Southeastern

U.S.

Coastal plain

wetlands

Proportion of wetlands

dry

Presence or absence of water in wetland; sampled in both spring and

fall seasons
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Gettysburg National Military Park, PA (n = 21), Great

Swamp NWR, NJ (n = 41), Iroquois NWR, NY

(n = 20), Moosehorn NWR, ME (n = 20), Patuxent

Research Refuge, MD (n = 84), Rachel Carson NWR,

ME (n = 12), Rock Creek NP, DC (n = 9), and

Walkill River NWR, NJ (n = 24). In all study areas,

annual mean precipitation during the 2004–2014

sampling period was consistent with, or slightly higher

than, the climate normal for mean annual precipitation

(i.e., 30-year mean; Table 2).

We restricted our analysis to spring sampling

occasions (i.e., March–May), during which time

amphibians were breeding and laying eggs. We

measured maximum wetland depth during each visit

and averaged measurements across all visits within

our March–May sampling window because individual

sites were often surveyed more than once during this

time. We further standardized all measurements for

each wetland to have a mean of zero across all years,

thus allowing us to focus on temporal rather than

spatial variation in maximum wetland depth.

Region #2: Montane wetlands in Western U.S.

For region #2, we used data collected from n = 85

wetlands in Yosemite NP (Fig. 1c, d). Sites were

annually sampled from June to August along an

elevation gradient (ranging from 2240 to 3012 meters)

between 2007 and 2015 (Online Resource 1). Mean

annual precipitation during the sampling period

(2007–2015) was slightly lower than the region’s

climate normal (Table 2), but variability between

years in mean annual precipitation was high.

We measured wetland area using width and length

measurements taken at the furthest points of the visible

water line. We standardized area measurements for

each wetland to have a mean of zero meters across all

years, which allowed us to control for spatial (or

elevational) patterns in wetland dynamics. To account

Table 2 Annual mean precipitation climate normal and mean annual precipitation for each study area, with their respective standard

deviations

Study area Climate normal precip.a (cm) Mean annual precip.b (cm) SD

Region #1: Northeastern U.S.

Acadia NP, ME 10.28 11.51 1.59

Assabet River NWR, MA 10.19 10.78 1.47

Cape Cod National Seashore, MA 10.26 10.83 1.08

Canaan Valley NWR, WV 10.36 10.34 0.86

Erie NWR, PA 9.41 9.91 1.03

Gettysburg National Military Park, PA 8.93 9.57 1.18

Great Swamp NWR, NJ 10.29 10.81 1.72

Iroquois NWR, NY 8.47 8.94 0.64

Moosehorn NWR, ME 9.74 10.84 1.45

Patuxent Wildlife Research Center, MD 9.20 9.50 1.26

Rachel Carson NWR, ME 10.28 11.51 1.59

Rock Creek NP, DC 9.20 9.50 1.26

Wallkill River NWR, NJ 10.29 10.81 1.72

Region #2: Western U.S.

Yosemite NP, CA 4.43 3.40 1.35

Region #3: Southeastern U.S.

St. Marks NWR, FL 12.34 12.29 2.31

Mean precipitation records for each climate division, retrieved from nClimDiv
aRepresents a 30-year (1981–2010) mean of annual precipitation
bMean annual precipitation calculated from 2004 to 2014 in the Northeastern U.S., 2007–2015 in the Western U.S., and 2009–2014 in

the Southeastern U.S
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for year-to-year variability in sampling date among

sites, we also included a standardized effect for Julian

date in all models.

Region #3: Coastal plain wetlands in Southeastern

U.S.

We used data collected from St. Marks NWR, FL

comprised of observations from n = 60wetlands in the

refuge’s Panacea Unit from 2009 to 2014 (Fig. 1e, f).

Surveys were conducted during both the spring

(March–April) and fall (September–October) breed-

ing seasons at 45 wetlands from 2009 to 2011, and an

additional 15 sites from 2012 to 2014 (Online

Resource 1; Walls et al. 2013a). All climate data were

retrieved for the months of April and October for

spring and fall sampling occasions, respectively. The

sampled interval was punctuated by extensive drought

in 2010–2011 and heavy precipitation and flooding as

a result of Tropical storm Debby in 2012 (see Walls

et al. 2013a; Davis et al. 2017). However, annual mean

precipitation during the overall sampling period

(2009–2014) did not differ from the region’s climate

normal (Table 2).

Measurements of wetland area or depth were not

taken at the time of amphibian surveys in this study

area. Instead, we focused on the presence or absence of

water in a wetland during amphibian breeding seasons

(i.e. was a wetland suitable habitat for breeding to

occur). Consequently, our response variable was the

proportion of monitored wetlands that were dry in

each sampling period. We analyzed spring and fall

sampling occasions independently to understand sea-

sonal differences in the index that best captures

variability in year-to-year habitat suitability.

Climate index covariates

We focused on a set of readily available indices

(Table 3) which have been successfully used by

ecologists to relate wetland hydroregime to species

occurrence patterns (see Walls et al. 2013a; Davis

et al. 2017; Miller et al. 2018 for examples). These

indices include the: Palmer hydrological drought

index (PHDI), Palmer drought severity index (PDSI),

Palmer modified drought index (PMDI), Palmer Z

index (ZNDX; also known as the Palmer moisture

anomaly index) and a suite of standardized precipita-

tion indices (SPI; calculated over 1-month, 2-month,

3-month, 6-month, 9-month, 12-month and 24-month

time intervals). Area-specific data were retrieved from

the nClimDiv dataset, compiled by National Oceanic

and Atmospheric Administration according to climate

division (NOAA’s Gridded Climate Divisional Data-

set 2015; Vose et al. 2014). A list of the area-specific

climate divisions is presented in Online Resource 2.

Note that the Northeastern U.S. region included

multiple climate divisions, while the Western and

Southeastern U.S. regions each only included one

division. Therefore, we use the term ‘region’ to refer to

the general location of our study sites in the Western

and Southeastern U.S. but acknowledge that our

inferences are limited to the level of the climate

division for these two regions where data were

spatially sparse. All climate indices were calculated

monthly; values were retrieved for the middle of the

sampling window when most surveys were conducted

in each region. This corresponded to the months of

April and July for the Northeastern and Western U.S.

regions, respectively. For the Southeastern U.S.

region, this corresponded to the months of April for

the spring and October for the fall sampling occasions.

Each of these indices examines deviations from a

site’s average precipitation. For example, PHDI

measures hydrological impacts (e.g., reservoir and

groundwater levels) of prolonged drought conditions

(Karl 1986; Guttman 1991), while PDSI examines

consequences of meteorological drought. PDSI can

respond much more rapidly to changing conditions, as

hydrological impacts of drought (measured by PHDI)

take longer to recover than meteorological impacts

(Palmer 1965; Alley 1985). PHDI and PDSI make use

of precipitation and surface air temperature in a

physical water-balance model, thus capturing changes

in potential evapotranspiration (Palmer 1965; Heim

2002; Dai et al. 2004). However, PDSI does not

account for the delayed effects of runoff due to snow

melt, for example, and does not adequately capture

droughts on time scales less than 12 months (Heim

2002). PMDI is a weighted average of the measures

used to calculate PDSI and is equivalent to PDSI

during established droughts or ‘wet’ periods, but

differs during transition periods (Heddinghaus and

Sabol 1991). Similarly, ZNDX can also be derived

from the calculation of PDSI but examines monthly

moisture dynamics, thus capturing short-term depar-

tures from normal precipitation patterns (Sakamoto

1978; Karl 1986; Heim 2002; Dai et al. 2004).
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The standardized precipitation index is the simplest

of these indices because it only quantifies hydrologic

inputs to the system (Guttman 1998). SPI is standard-

ized so that a value of 0 indicates a site received the

median amount of precipitation, as calculated over at

least a 30-year period (Guttman 1998). Deviations

from 0 are reflected as standard deviations from the

long-term average. SPI can be calculated for different

time intervals to reflect short (e.g., 1-month; SPI-01)

and long-term (e.g., 24-month; SPI-24) impacts of

deviations from a site’s average precipitation. This

allows for drought conditions to be experienced over

one time scale (i.e., in the short term) but not over

another (i.e., the long term). We included SPI calcu-

lated over 1-month, 2-month, 3-month, 6-month,

9-month, 12-month and 24-month time intervals as

potential explanatory variables.

We included additional climate covariates for our

montane study system that captured snow water

equivalence (SWE), which measures the amount of

water contained within the snowpack (Jonas and

Magnusson 2009). We used data from the Snow

Telemetry Network (SNOTEL), which consists of

over 800 high-elevation sites monitored throughout

the Western U.S. Data on snowpack, precipitation and

temperature are collected in a standardized manner

across all SNOTEL sites. Products derived from

SNOTEL data are common and widely available

across the Western U.S., thus facilitating their use in

large-scale ecological studies. However, only one

SNOTEL site (#846; Snow Telemetry and Snow

Course Data and Products) was located within the

Yosemite NP study area. Therefore, we retrieved daily

SWE data for this single, centralized location (#846)

and summarized those data to capture annual maxi-

mum (MaxSWE) and mean (MeanSWE) values

applicable to the entire study area. While this is a

coarse measure of SWE at the wetland-level, this

measure was comparable to all of our other climate

indices that were calculated at the level of a climate

division. Furthermore, the use of standardized SNO-

TEL data, as opposed to other measures of snowpack,

increases the applicability of our approach outside of

Yosemite NP.

Statistical estimation

All statistical models were fit in R (R Core Team

2017). We analyzed data using linear regression for

the Northeast vernal pool and Western montane

systems, and logistic regression for our Southeast

coastal system. We report estimates from the ‘best-fit’

models for each region, as selected via Akaike’s

Information Criterion (AIC) and set statistical signif-

icance at an a-level = 0.05.

Our interest in this study was our ability to explain

year-to-year variation in habitat suitability, as defined

by the metrics of wetland size (e.g., maximum depth,

area) or the presence or absence of water during the

amphibian breeding season. Our observations

Table 3 Description of the 6 readily available indices related to water availability that we used to explain annual variation in

temporary wetland inundation in three distinct North American ecosystems

Index Description References

Palmer’s drought severity

index (PDSI)

Measures meteorological drought; takes into account precipitation,

evapotranspiration, soil-moisture conditions

Palmer (1965); Alley

(1985)

Palmer’s hydrological

drought index (PHDI)

Measures hydrological impacts of prolonged drought conditions; takes into

account precipitation, evapotranspiration, soil-moisture conditions

Karl (1986); Guttman

(1991); Palmer (1965)

Palmer’s modified

drought index (PMDI)

Weighted average of the measures used to calculate PDSI Heddinghaus and Sabol

(1991)

Palmer’s Z index

(ZNDX)

Derived from the calculation of PDSI; captures monthly moisture dynamics Sakamoto (1978); Karl

(1986)

Standardized

precipitation index

(SPI)

Based on the cumulative probability of a rainfall event occurring; only

quantifies hydrologic inputs to the system; calculated over 1-, 2-, 3-, 6-, 9-,

12-, 24-month intervals to capture short or long-term effects

Guttman (1998)

Snow water equivalence

(SWE)

Measures the amount of water contained within the snowpack Jonas and Magnusson

(2009)
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included additional sources of variation, which needed

to be accounted for when assessing model fit. These

additional sources of variation can be decomposed

within each region into the heterogeneity among

individual wetlands, between years, and the interac-

tion between these two effects (Whittaker 1984;

Grömping 2007). To measure fit in the component

we were interested in, we first decomposed the overall

variance (e.g., Cushman and McGarigal 2002; Lawler

and Edwards Jr. 2006; Grömping 2007) to isolate year-

to-year effects and measure variation explained in this

component (Online Resource 3). We report R2 values

for our linear models as a proportion of the year-to-

year variation explained by the ‘best-fit’ climate index

in the Northeastern and Western regions. For the

Southeastern study region, we report McFadden’s

pseudo R2 (R2
McFadden; McFadden 1974) as a measure

of explained variability in our ‘best-fit’ logistic model.

McFadden’s pseudo R2 compares the maximized log

likelihood for an intercept-only model to the model fit

with the ‘best-fit’ climate index. Values of R2
McFadden

between 0.2 and 0.4 are indicative of good model fits

(Domencich and McFadden 1975; McFadden 1977).

Results

Region #1: Vernal pools in Northeastern U.S.

Short-term indices performed best at capturing vari-

ability in maximum depth across all 13 study areas in

the Northeastern U.S. Specifically, SPI calculated over

a 6-month time interval (SPI-06) best explained

variation in maximum wetland depth (Table 4). On

average, wetland depth increased in years with above

average precipitation and decreased during periods of

drought [b̂ (95% CI) 0.02 (0.01, 0.03); Fig. 2a].

R2 = 0.40 (p value\ 0.001) when measuring the

amount of among-year variation explained by SPI-06.

Region #2: Montane wetlands in Western U.S.

The standardized precipitation index calculated over a

3-month time interval (SPI-03) best explained year-to-

year variation in wetland area for Yosemite NP

(Table 4). Contrary to our predictions, MaxSWE and

MeanSWE performed poorly relative to all other

indices, with the exception of SPI-24. In fact, all of our

long-term metrics performed poorly when compared

to the Standardized Precipitation Indices. The positive

relationship between SPI-03 and wetland area was

statistically ‘significant’ [b̂ (95% CI) 245.08 (167.29,

322.86), p value\ 0.001; Fig. 2b] with an R2 = 0.40

for the among-year component of variation. Despite

site-level heterogeneity, observed values of PHDI,

PDSI and ZNDX retrieved from nClimDiv at the

climate division-level did not differ during the study

period. Our models and resultant estimates are there-

fore identical for these three indices (see Table 4).

Region #3: Coastal plain wetlands in Southeastern

U.S.

Short-term indices also performed best at capturing

year-to-year variation in the presence of water in the

basin, for both seasons at SMNWR. The proportion of

wetlands dry at the time of sampling was most closely

related to SPI calculated over a 2-month [SPI-02; b̂
(95%CI)- 1.76 (- 0.60,- 2.91)] and 3-month [SPI-

03; b̂ (95%CI)- 0.60 (- 0.30,- 0.90)] time interval

for spring and fall occasions, respectively (Table 4).

Each of these indices was negatively correlated with

the proportion of wetlands dry for amphibian breeding

at the time surveys were conducted (Fig. 2c, d).

Furthermore, these predictors captured a high propor-

tion of variability in this response variable during both

the spring (SPI-02: R2
McFadden = 0.43, p value = 0.003)

and fall seasons (SPI-03: R2
McFadden = 0.39, p

value\ 0.001).

Discussion

In each of our three North American ecosystems, we

demonstrate that habitat suitability (measured by

maximum depth, area and presence or absence of

water—important metrics for amphibian breeding and

recruitment) is most sensitive to changes in short-term

precipitation. The standardized precipitation indices

are the simplest of our tested climate variables

(Vincente-Serrano et al. 2010), but best predicted

year-to-year variability in habitat suitability in all

three regions. However, the time scales of these ‘best-

fit’ SPI differed among regions and between seasons in

the case of our Southeastern U.S. study area. These

differences are likely a result of regional and site-
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specific differences in soil composition, surficial

geology, basin geomorphology, and climate that

influence the interactions between year-to-year water

availability and habitat suitability. Nevertheless, SPI

out-performed all other indices, including the short-

term Palmer indices, PMDI and ZNDX, that explicitly

account for precipitation, evapotranspiration, and soil-

moisture conditions. Metrics based only on precipita-

tion data, such as SPI, have been shown to accurately

determine the intensity, duration and extent of drought

events (Chang and Cleopa 1991; Heim 2002; Vin-

cente-Serrano et al. 2010) as well as estimate soil-

moisture dynamics (Sims et al. 2002). In addition,

precipitation-based measures require little data

beyond historic precipitation records (Guttman 1998;

Vincente-Serrano et al. 2010), making them a useful

metric to compare the effects of changing precipitation

patterns in vastly different ecosystems. Our results

further suggest that we can understand year-to-year

variation in habitat suitability across different tempo-

rary wetland systems with this set of simple variables.

Precipitation is the primary hydrologic input to

vernal pools (Zedler 2003; Brooks 2009). SPI-06

captures short-term deviations from a site’s average

precipitation, as calculated over the previous 6-month

period. For our particular analysis, this corresponds to

the time period between November and April, which

captures winter and spring precipitation. Losses via

evapotranspiration are a strong driver in forested

systems, but primarily occur later in the summer when

vegetation is abundant and the canopy is full (Brooks

2004). During the time at which sampling occurred,

sites had minimal vegetative growth and low seasonal

temperatures precluded the loss of water via evapo-

ration. While indices that account for evapotranspira-

tion, such as PHDI or PDSI, may be better able to

capture dynamics in wetland hydroperiod later in the

season, we were not able to explicitly test this

prediction. Importantly, our results suggest that habi-

tat suitability of vernal pools may not be influenced by

antecedent hydrologic conditions of previous years, at

least during amphibian breeding (i.e., the time of our

sampling).

Snowpack is a well-known contributor to surface

water in montane wetlands and serves as an essential

water storage mechanism across the landscape (Mote

2003; Jonas and Magnusson 2009; Bowling and

Lettenmaier 2010; Ryan et al. 2014). Our results,

however, do not clearly support this relationship for

Yosemite NP. Instead, our results indicate that SPI-03

was better able to explain year-to-year variation in

wetland area than either of our two SWE metrics. At

the time of sampling (June–August), therefore, wet-

lands were primarily influenced by precipitation

Table 4 DAIC values for each study region’s regression analysis, relating annual wetland metrics to climate indices

Index Region #1: Vernal

pools

Region #2: Montane

wetlands

Region #3a: Coastal plain wetlands

(spring)

Region #3b: Coastal plain

wetlands (fall)

SPI-01 41.07 18.89 10.25 13.98

SPI-02 20.30 18.19 0.00 10.83

SPI-03 9.70 0.00 10.00 0.00

SPI-06 0.00 8.74 17.58 4.19

SPI-09 35.89 14.55 11.51 9.69

SPI-12 37.30 13.93 10.75 12.92

SPI-24 28.33 32.23 11.38 16.59

ZNDX 20.99 29.53a 7.31 11.82

PDSI 28.12 29.53a 0.15 4.72

PMDI 40.92 5.19 0.05 3.09

PHDI 12.21 29.53a 8.77 8.91

MaxSWE – 36.87 – –

MeanSWE – 33.58 – –

Bolded values indicate the best-supported models according to AIC
aNo variation was observed in the values of PHDI, PDSI and ZNDX retrieved from nClimDiv for the study period
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between April and June. This suggests that either (1)

snowpack is not a primary hydrologic driver for our

particular set of surveyed wetlands, or (2) there is a

great deal of heterogeneity among sites in SWE not

captured by the single SNOTEL station used for all

sites. At the scale we examined, however, our results

suggest that SWE may not be useful for understanding

year-to-year site-specific variation in habitat suitabil-

ity at the onset of amphibian breeding.

Oscillations in water availability have structured

coastal landscapes for millennia (Michener et al.

1997). We tested the prediction that habitat suitability

in our Southeastern coastal system, as a result, was

more correlated with short- rather than long-term

indices. We found this to be an accurate prediction;

despite severe drought conditions during the study

period, long-term indices were poor predictors of year-

to-year habitat suitability. SPI-02 and SPI-03 were

highly correlated with our observations of the pres-

ence or absence of water in the spring and fall seasons,

respectively. Importantly, additional inputs via storm

surge or flooding are not captured by SPI, but can

influence hydroperiod, wetland productivity, and

community composition through a variety of mecha-

nisms (e.g., sediment deposition, salinization; Mich-

ener et al. 1997; Herbert et al. 2015; Davis et al. 2017).

Our results indicated that PMDI and PDSI were also

strongly supported (DAIC\ 2) in the spring seasons,

Fig. 2 Annual wetland metrics (�x ± SD) as a function of the

best-fit climate index for temporary wetland systems in

a Northeastern U.S.; b Western U.S.; and c, d Southeastern

U.S. in the spring and fall seasons, respectively. Blue lines show

the estimated relationship and 95% confidence interval for the

‘best-fit’ climate index and response variable in each region
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further suggesting that factors associated with mete-

orological drought (i.e., consistent, dry conditions

associated with below-average precipitation; Hed-

dinghaus and Sabol 1991) are important to consider

when predicting habitat suitability for breeding

amphibians in coastal systems.

As a result of climate change, precipitation is

predicted to decline in the Southeast and increase in

the northeastern U.S. (Dore 2005; IPCC 2014) during

the late winter and early spring. These changes in the

amount of overall precipitation will undoubtedly shift

wetland hydroregime (Brooks 2004; Greenberg et al.

2015). This likely means that many of the wetlands we

examined in the southeastern U.S. will no longer be

suitable for breeding amphibians (or other wetland

inhabitants) in the future, while those wetlands in the

northeastern U.S. may increase in maximum spring

inundation (at the time of breeding). As a result, many

of the ecosystem functions provided by temporary

wetland systems may be displaced or lost entirely

(Blaustein et al. 2010; Walls et al. 2013b). Specifi-

cally, the shortening of wetland hydroperiod due to a

decline in overall precipitation may promote early

breeding (Beebee 1995; Gibbs and Breisch 2001;

Kusano and Inoue 2008) or rapid larval growth and

metamorphosis (Wilbur and Collins 1973; Rowe and

Dunson 1995), which has been associated with

reduced adult fitness (John-Alder and Morin 1990;

Goater et al. 1993; Beck and Congdon 2000; Gervasi

and Foufopoulos 2008). In contrast, increased precip-

itation may result in more persistent inundation, thus

reducing the habitat that is available and suitable for

amphibian species that rely on temporary wetlands

(Walls et al. 2013b). Importantly, however, predic-

tions for the northeast also expect more frequent, and

more severe, midsummer droughts (Hayhoe et al.

2007), which will reduce probabilities of successful

metamorphosis (Mackenzie et al. 2011), leading to an

ecological trap. The frequency and types of hydrologic

inputs and outputs to the basin impact not only the

length but the timing of inundation as well (Pechmann

et al. 1989; Babbitt et al. 2003; Colburn 2004; Brooks

2009). In addition to changes in the overall amount of

precipitation, temporal changes in weather patterns

could also impact the onset, duration and success of

seasonal reproduction for wetland-breeding amphib-

ians, though these effects are largely understudied

(Walls et al. 2013b). In either case, shifts in the

different components of wetland hydroregime across

the landscape would lead to changes in species

occupancy (e.g., Raxworthy et al. 2008; Walls et al.

2013a; Miller et al. 2018), community composition

(e.g., Babbitt and Tanner 2000), and interspecific

interactions (e.g., Davis et al. 2017).

Wetland hydroregime is complex and quantifying

system responses to changing conditions is challeng-

ing, yet vital to our understanding of how species will

respond to climate change (Lee et al. 2015). Our

analysis focuses on just one link between climate and

hydroregime: the effect of water availability averaged

over scales of a couple months to years, interpolated

across large spatial scales, and measured at a specific

point within an annual cycle. As such, our study does

not replace the intensive data collection that charac-

terizes most site-intensive hydrological studies (e.g.,

Chandler et al. 2017). Our results indicate that while

short-term climate indices performed best of the

selected indices, these measures still did not capture

a large portion of the observed variability in Northeast

vernal pools or montane wetlands. Available climate

measures, such as those we examined here, may not be

at a scale that is useful or adequate for temporary

wetlands in these systems. In addition, landscape-level

differences in topography and geology, as well as fine-

scale differences in basin geomorphology, and soil

properties within each study area, likely play an

important role that we did not examine here. Future

work should focus on better incorporating wetland-

level variation and exploring alternative variables that

best relate hydrologic inputs to hydroregime and the

resultant ecological processes (Brooks and Hayashi

2002). For example, large rainfall events may increase

connectivity, allowing aquatic predators to colonize

isolated wetlands (e.g., Davis et al. 2017), or otherwise

alter habitat suitability for breeding, but we were not

able to examine these effects in this study. Future work

should also look at the direct and indirect influences of

changes to the frequency and timing of large rainfall

events on wetland hydroregime throughout the

amphibian breeding season, especially because

extreme precipitation events are predicted to increase

in frequency and/or magnitude across the continental

U.S. (Easterling et al. 2000; Allan and Soden 2008).

The ability to link fluctuations in water availability

to hydroregime to is vital for predicting how wetland

community assemblages will respond to environmen-

tal change. Understanding these links, however, is

complicated by our uncertainties in how climate and
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hydrology are linked, and imprecision in measuring

relevant local climate and hydrologic dynamics

(Winter 2000). This is especially relevant when trying

to predict changes in hydrology across expansive

landscapes, or even year-to-year variation in habitat

suitability. We have demonstrated that there is utility

in understanding how coarse measures of water

availability will change in the future. However, we

have also shown that there is a need to understand the

site-specific differences in soil composition, basin

geomorphology, and climate that likely resulted in

region-level heterogeneity in the time scale over

which the ‘best-fit’ SPI was calculated. Despite this,

simple metrics such as SPI that are widely available

and straightforward to calculate are relevant when the

goal is to make landscape-level predictions on the

hydrological responses of these important wetland

ecosystems to changing climate.
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